UK Contributions to the MicroCarb Mission

R Hartmut Boesch, Dongxu Yang

Paul Palmer

Martin Townsend, Peter Worsfold, Simon Chalkley

Jolyon Roburn, Paul Eccleston, Robert Elliott

cnes CNES MicroCarb team

Global Measurements from Space are Essential for Monitoring Atmospheric CO₂

To limit the rate of atmospheric carbon dioxide buildup, we must

- Control emissions associated with human activities
- Understand & exploit natural processes that absorb carbon dioxide

We can only manage what we can measure

Plumes from medium-sized power plant elevates X_{CO2} by a few ppm for 10's of km downwind [Hill and Nassar, 2019].

National Centre for Earth Observation

Hartmut Boesch | hb100@le.ac.uk

background of "CO₂ weather"

The Pioneers: The first dedicated CO₂ Missions

GOSAT (2009 - ?) – First Japanese GHG satellite - FTS with high spectral resolution optimized for spectral coverage (O₂, CO₂, CH₄)

OCO-2 (2014 - ?) – First NASA satellite designed to measure CO₂ with high sensitivity and resolution with small samples (< 3 km²)

National Centre for Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

TanSat (2016 - ?) - First Chinese GHG satellite - Uses same O₂ and CO₂ bands and similar orbit as OCO-2

3

ŀ

Hartmut Boesch | hb2

The first dedicated European CO₂ Satellite: MicroCarb

- MicroCarb is a CO₂ mission developed by CNES for in 2021
- Innovative, compact instrument compatible with microsatellite <200kg
 - 4 spectral bands acquired with single spectrometer and detector
 - Very high spectral resolution (R ~25,000)
 - Extra O₂ band at 1.27 micron to facilitate better aerosol correction
- Similar sampling strategy to OCO-2:
 - Nadir, glint, target with 3 ground pixels each 4.5 x 9 km² (@nadir)

Performances N1	B1 (O ₂)	B4 (O ₂)	B2(CO ₂)	B3(CO ₂)
Central wavelength (nm)	763.5	1273.4	1607.9	2037.1
Bandwidth (nm)	10.5	17.6	22.1	28,1
Spectral Resolution ($\lambda/\Delta\lambda$)	25 500	25 900	25 800	25 900
Signal to Noise ratio @ Lmean (per channel)	285	378	344	177

UK Joining MicroCarb Mission

UK Space Agency has joined MicroCarb mission as partner in 2017

UKSA-CNES Signing Ceremony, April 2017

National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

hb100@le.ac.uk Hartmut Boesch

 \gg

UK SPACE

(CEOI Bilateral Carbon Mission Project, 2014 - 2015)

5

MicroCarb Organisation

UK contributions in key areas: Calibration, AIT, algorithms and science

MicroCarb Pre-flight Calibration & Characterisation

- NPL is providing the MicroCarb instrument pre-flight calibration facility:
 NPL Spectroscopically Tuneable Absolute Radiometric calibration & characterisation OGSE (STAR-CC-OGSE)
- MicroCarb instrument 4x spectrometer bands and imager performance needs to be verified for parameters including:
 - SNR, ISRF, ILS, smile/tilt, keystone/tilt, dazzling, FoV, SRF, spectral calibration, absolute radiometric calibration, non-linearity, polarisation-dependence, inter/intra-band, spatial, spectral & temporal registration...
- This is provided by an effective optical test card of projected geometric features and uniform radiance fields in both broadband and monochromatic wavelengths

The STAR-CC-OGSE system

- STAR-CC-OGSE a versatile facility for radiometric calibration and calibration of satellite sensors
- Laser allows monochromatic continuous tuneability from 380 nm to 2500 nm, with broadband (white light) source extending over same spectral extent
- STAR-CC-OGSE has two components:
 - large aperture <u>SI-traceable</u> calibrated integrating sphere source for radiometric calibration
 - collimated beam source, equipped with interchangeable, position fine-tuneable feature mask for optical performance characterisation

Pointing and Calibration Subsystem (PCS)

Engineering Qualification Model of Pointing and Calibration Sub-system of MicroCarb Instrument

- during integration and functional test (left)
- in Qual Vibration Test (right)

<u>On-Board Pointing and Calibration</u> Sub-system of MicroCarb will:

- 1) Ensure telescope Line of Sight de-pointing in one direction of ±35° around Nadir
- 2) Calibrate instrument radiometric response in absolute terms and spectral dispersion using Sunlight through a diffuser
- 3) Calibrate instrument radiometric response in spatial and spectral relative terms using white lamp
- 4) Close instrument entrance at launch, for dark calibration and in safe modes

Science & Technology Facilities Council

RAL Space

MicroCarb Satellite Assembly, Integration and Test (AIT)

- MicroCarb <u>Satellite integration</u> is being performed by TAS in UK in cleanroom at RAL Space
- Platform, FM units and Instrument are supplied by CNES: "Myriade" Platform designed for small EO missions
- Bespoke Satellite MLI blankets/Active Thermal Control are developed by TAS in partnership with RAL Space
- Bespoke EGSE are being developed by TAS to support MicroCarb AIT
- Propulsion retrofit of existing Myriade Propulsion unit is performed in Thales Belfast to comply with French Space Law

ThalesAl

a Thales / Leonardo comp

MicroCarb AIT - Four Major Project Phases ThalesAlenia

- Preparation Phase (Phase A) : Complete
- Platform AIT Phase (Phase B) : In Progress.
 - Phase commenced with reception of Structure Panels in July 2019.
 - Panel preparation and bake-out currently underway alongside receipt of Flight Equipment prior to mechanical & electrical integration.
- Satellite AIT Phase (Phase C) : Phase commences with reception of flight instrument in Summer 2020. Instrument is mechanically and electrically installed, prior to Satellite qualification campaign.
- Launch Campaign (Phase D): Six week launch campaign at Kourou launch site (French Guiana) in Summer 2021. Thales Alenia Space team from UK shall be on-site to perform final launch preparations

MicroCarb Retrieval Development: Solar-Induced Fluorescence SIF Retrieval

- In addition to supporting MicroCarb CO₂ retrieval development, we will provide SIF retrieval processor
- Solar Induced Fluorescence SIF is a NIR signal emitted by plants during photosynthesis
- SIF can be retrieved from filling-in of solar lines (eg GOSAT)
 - SIF product allows observation of plant productivity GPP from space
 - Synergistic use with CO₂

Focus on Cities

• 'City-Mode' of MicroCarb:

- Experimental capacity with locally improvement of spatial resolution of 2x2 km²
- Obtained by slowing down satellite scrolling + scan + binning tuning
- <u>Allows mapping of cities to study</u> <u>CO₂ emissions</u>
- Development of Models and Flux Inversions for MicroCarb City-Mode
- London as reference city

Ground-based

Intensive Measurement Study for London

MicroCarb - Part of the International GHG Constellation

Satellite, Instrument (Agencies)	$\rm CO_2 CH_4$	2002		2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
ENVISAT SCIAMACHY (ESA)	• •												
GOSAT TANSO-FTS (JAXA-NIES-MOE)	• •												
OCO-2 (NASA)	• *	:											
GHGSat (Claire)	•												
TanSAT (CAS-MOST-CMA)	•												
Sentinel 5P TROPOMI (ESA)	•												
Feng Yun 3D GAS (CMA)	• •												
Gao Fen-5 GMI	• •												
GOSAT-2 TANSO-FTS (JAXA-MOE-NIES													
OCO-3 (NASA)	•												
Bluefield Technologies	• 1												
MicroCarb (CNES] UKSA)	•												
MethaneSAT (EDF)	•												
MetOp Sentinel-5 series (Copernicus)	•												
Feng Yun 3G (CMA)	• •												
GEOCARB (NASA)	• •												
MERLIN (DLR-CNES)	•)												
TanSat-2 Constellation	• • :												
GOSAT-3 (JAXA-MOE-NIES)	• •												
CO2 Sentinel (Copernicus)	• • :												
			Scien	ce			Oper	ationa	l		Exten	ded N	lission

- MicroCarb is critical mission for continuous presence in space - Launch 2021 is important
- Cross-validation and coordination with OCO-2/-3, GOSAT/-2 and Tansat
- Play part in preparation of global stocktake 2023/2028
- Contribute to preparation of future CO2M (Copernicus)

National Centre for Earth Observation Planned

Considered

2018 2019 2020 2021 2022 2023 2024 2025

- MicroCarb will be the first dedicated, European CO₂ mission which will be an important contribution to the international GHG constellation and be an important step toward a space-based capacity for monitoring anthropogenic carbon emission
- UK has strong involvement in MicroCarb in key areas from space-hardware, cal/val to ground-segment/algorithms
- MicroCarb will provide great opportunities for science exploitation and help to strengthen the role of UK for future carbon missions

